Oceňování 2021, 14(4):53-66 | DOI: 10.18267/j.ocenovani.270

Can Machine Learning Be Useful in Corporate Finance and Business Valuation? Overview of Current Research

Veronika Staňková
Ing. Veronika Staňková, doktorand, Katedra financí a oceňování podniku, Fakulta financí a účetnictví, Vysoká škola ekonomická v Praze

Prediction of financial time series has been at the centre of scientific research for a long time. Recently, there have been a wide range of possibilities to apply machine learning methods. Currently, there are so many scientific papers in the field of application of machine learning in finance that it is very difficult to find the way around. The presented paper aims to provide a fundamental overview of the current state of knowledge in this area, specifically within the area of corporate finance and business valuation, and to assist in orientation in the methods of machine learning those who have not yet encountered machine learning.

Keywords: Machine learning; Deep learning; Finance; Shares
Grants and funding:

Článek je zpracován jako jeden z výstupů výzkumného projektu IG104020, který je realizován na Fakultě financí a účetnictví VŠE Praha.

JEL classification: G12

Published: April 20, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Staňková, V. (2021). Can Machine Learning Be Useful in Corporate Finance and Business Valuation? Overview of Current Research. Oceňování14(4), 53-66. doi: 10.18267/j.ocenovani.270
Download citation

References

  1. Buczynski, W., Cuzzolin, F., a Sahakian, B. (2021): A review of machine learning experiments in equity investment decision-making: why most published research findings do not live up to their promise in real life. International Journal of Data Science and Analytics (11), P. 221-242. https://doi.org/10.1007/s41060-021-00245-5 Go to original source...
  2. Durairaj, M., & Mohan, B. K. (2019): A Review of Two Decades of Deep Learning Hybrids for Financial Time Series Prediction. International Journal on Emerging Technologies, 10(3), p. 324-331.
  3. Ferreira, F. G., Gandomi, A. H., a Cardoso, R. T. (2021): Artificial intelligence applied to stock market trading: A review. IEEE Access, 9, 30898-30917. Go to original source...
  4. Ghoddusi, H., Creamer, G. G. a Rafizadeh, N. (2019): Machine Learning in Energy Economics and Finance: A Review. Energy Economics, 81. Preprint. P 1-72 https://doi.org/10.1016/j.eneco.2019.05.006 Go to original source...
  5. Hastie, T., Tibshirani, R. and Friedman, J. (2001): The Elements of Statistical Learning, Data Mining, Inference, and Prediction. Springer, New York. ISBN 0-387-95284-5 Go to original source...
  6. Huang, J., Chai, J., a Cho, S. (2020): Deep learning in finance a banking: A literature review and classification. Frontiers of Business Research in China, 14:13, p. 1-24. https://doi.org/10.1186/s11782-020-00082-6 Go to original source...
  7. Jiang, W. (2021): Applications of deep learning in stock market prediction: recent progress. Expert Systems with Applications, 184: 115537. Preprint. P. 1-97. https://doi.org/10.1016/j.eswa.2021.115537 Go to original source...
  8. Kuizinienė, D., a Krilavičius, T. (2020): Deep learning methods application in finance: a review of state of art. In CEUR Workshop proceedings [electronic resource]: IVUS 2020, Information society a university studies, Kaunas, Lithuania, 23 April, 2020: proceedings. Aachen: CEUR-WS, 2020, Vol. 2698. p. 59-69.
  9. Mueller, J. P., & Massaron, L. (2016): Machine Learning for dummies. John Wiley & Sons, New Jersey. P. 410. ISBN 978-1-119-24551-3
  10. Müller, A. C., and Guido, S. (2016): Introduction to Machine Learning with Python: A Guide for Data Scientists, O'Reilly Media, Incorporated. ISBN 978-1-449-36941-5
  11. Ozbayoglu, A. M., Gudelek, M. U., a Sezer, O. B. (2020): Deep learning for financial applications: A survey. Applied Soft Computing, 93, 106384. Preprint. P. 1-52. https://doi.org/10.1016/j.asoc.2020.106384 Go to original source...
  12. Rundo, F., Trenta, F., Luigi di Stallo, A. a Battiato, S. (2019): Machine Learning for Quantitative Finance Applications: A Survey. Applied Sciences, 9(24), 5574. p. 1-20. https://doi.org/10.3390/app9245574 Go to original source...
  13. Sellhorn, T., (2020): Machine Learning und empirische Rechnungslegungsforschung: Einige Erkenntnisse und offene Fragen. Schmalenbachs Z betriebswirtsch Forsch 72, 49-69. https://doi.org/10.1007/s41471-020-00086-1 Go to original source...
  14. Sezer, O. B., Gudelek, M. U., a Ozbayoglu, A. M. (2019): Financial time series forecasting with deep learning: A systematic literature review: 2005-2019. Applied Soft Computing, 90, 106181. p. 1-63. Preprint. arXiv preprint arXiv:1911.13288. Go to original source...
  15. Shah, D., Isah, H., a Zulkernine, F. (2019): Stock market analysis: A review and taxonomy of prediction techniques. International Journal of Financial Studies, 7(2), 26. p. 1-21. https://doi.org/10.3390/ijfs7020026 Go to original source...
  16. Singh, N.P., Som, B.K., Komalavalli, C. a Goel, H. (2021): A Meta-Analysis of the Application of Artificial Neural Networks in Accounting a Finance. SCMS Journal of Indian Management, 18(1), pp. 5-21.
  17. Vachhani, H., Obiadat, M. S., Thakkar, A., Shah, V., Sojitra, R., Bhatia, J., & Tanwar, S. (2019): Machine learning based stock market analysis: A short survey. In International Conference on Innovative Data Communication Technologies a Application. Springer, Cham. P. 12-26. Go to original source...
  18. Warin, T. a Stojkov, A. (2021): Machine Learning in Finance: A Metadata-Based Systematic Review of the Literature. Journal of Risk a Financial Management 14, no. 7: 302. P. 1-31. https://doi.org/10.3390/jrfm14070302 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.