Oceňování 2020, 13(3):51-64 | DOI: 10.18267/j.ocenovani.254

Selecting a peer group of companies for valuation and outline of future research using machine learning

Veronika Staňková1, Miloš Mařík2
1 Ing. Veronika Staňková, doktorand, Katedra financí a oceňování podniku VŠE Praha
2 Prof. Ing. Miloš Mařík, CSc., Katedra financí a oceňování podniku VŠE Praha, ředitel Institutu oceňování majetku VŠE Praha

This article deals with peer group selection for the purpose of the market valuation approach. The academic professional public does not agree on the optimal approach in respect of the peer group selection. Therefore, in this article we start with a synthesis of the current literature on this matter, including a description and discussion of the three main approaches, namely: (i) aggregated groups based on industry classification, (ii) search for fundamental indicators and (iii) alternative methods using the big data. Following is the explanation of machine learning applied in the finance and an outline of future research in which we want to verify the potential of machine learning algorithms in selecting a comparable group of companies.

Keywords: Market valuation approach; Peer group; Machine learning
Grants and funding:

Článek je zpracován jako jeden z výstupů výzkumného projektu IG104020, který je realizován na Fakultě financí a účetnictví VŠE Praha.

JEL classification: G12

Published: December 28, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Staňková, V., & Mařík, M. (2020). Selecting a peer group of companies for valuation and outline of future research using machine learning. Oceňování13(3-4), 51-64. doi: 10.18267/j.ocenovani.254
Download citation

References

  1. Alford, A.W. (1992): The Effect of the Set of Comparable Firms on the Accuracy of the Price-Earnings Valuation Method. Journal of Accounting Research 30, 94-108. https://doi.org/10.2307/2491093 Go to original source...
  2. An, J., Bhojraj, S., Ng, D.T. (2010): Warranted Multiples and Future Returns. Journal of Accounting, Auditing & Finance 25, 143-169. https://doi.org/10.1177/0148558X1002500201 Go to original source...
  3. Bhojraj, S., Lee, C.M.C., (2002): Who Is My Peer? A Valuation-Based Approach to the Selection of Comparable Firms. J Accounting Res 40, 407-439. https://doi.org/10.1111/1475-679X.00054 Go to original source...
  4. Bhojraj, S., Lee, C.M.C., Oler, D.K., (2003): What's My Line? A Comparison of Industry Classification Schemes for Capital Market Research. J Accounting Res 41, 745-774. https://doi.org/10.1046/j.1475-679X.2003.00122.x Go to original source...
  5. Cheng, C.S.A., McNamara, R., (2000): The valuation accuracy of the Price/Earnings and Price-Book Benchmark Valuation methods. Review of Quantitative Finance and Accounting 15, 349-370. https://doi.org/10.1023/A:1012050524545 Go to original source...
  6. Damodaran, A., (2002): Multiples: First Principles.
  7. De Franco, G., Hope, O.-K., Larocque, S., (2015): Analysts' choice of peer companies. Rev Account Stud 20, 82-109. https://doi.org/10.1007/s11142-014-9294-7 Go to original source...
  8. Ding, K., Peng, X., Wang, Y., (2019): A Machine Learning-Based Peer Selection Method with Financial Ratios. Accounting Horizons 33, 75-87. https://doi.org/10.2308/acch-52454 Go to original source...
  9. Ding, K., Lev, B.I., Peng, X., Sun, T., Vasarhelyi, M.A., (2019b): Machine Learning Improves Accounting Estimates. Presented at the Review of Accounting Studies Conference, Singapore. Go to original source...
  10. Dittmann, I., Weiner, C., (2005): Selecting Comparables for the Valuation of European Firms. SSRN Journal 25 stran. https://doi.org/10.2139/ssrn.644101 Go to original source...
  11. Fang, F., Dutta, K., Datta, A., (2013): LDA-based industry classification. Presented at the Thirty Fourth International Conference on Information Systems, Milan.
  12. Hoberg, G., Phillips, G., (2016): Text-Based Network Industries and Endogenous Product Differentiation. Journal of Political Economy 124, 1423-1465. https://doi.org/10.1086/688176 Go to original source...
  13. Hoberg, G., Phillips, G., (2010): Product Market Synergies and Competition in Mergers and Acquisitions: A Text-Based Analysis. Rev. Financ. Stud. 23, 3773-3811. https://doi.org/10.1093/rfs/hhq053 Go to original source...
  14. Janda, K., (2019): Earnings stability and peer company selection for multiple based indirect valuation. Finance a Uver - Czech Journal of Economics and Finance 69, 37-75.
  15. Knudsen Overgaard, J., Kold, S., Plenborg, T., (2017): Stick to the fundamentals and discover your peers. Financial Analysts Journal 73, 85-105. Go to original source...
  16. Lee, C.M.C., Ma, P., Wang, C.C.Y., (2015): Search-based peer firms: Aggregating investor perceptions through internet co-searches. Journal of Financial Economics 116, 410-431. https://doi.org/10.1016/j.jfineco.2015.02.003 Go to original source...
  17. Mařík, M., (2011) Metody oceňování podniku: proces ocenění - základní metody a postupy. Ekopress, Praha.
  18. Mejzlík, L., Ištvánfyová, J., (2006): Vykazování podnikových dat v elektronické podobě - XBRL. Český finanční a účetní časopis, 2006.2: p. 124-129. https://doi.org/10.18267/j.cfuc.157 Go to original source...
  19. Müller, A.C., Guido, S., (2016): Introduction to machine learning with Python: a guide for data scientists, First edition. ed. O'Reilly Media, Inc, Sebastopol, CA.
  20. Nel, S., Bruwer, W., le Roux, N., (2014): An emerging market perspective on peer group selection based on valuation fundamentals. Applied Financial Economics 24, 621-637. https://doi.org/10.1080/09603107.2014.894629 Go to original source...
  21. Plenborg, T., Pimentel, R.C., (2016): Best Practices in Applying Multiples for Valuation Purposes. JPE 19, 1-10. https://doi.org/10.3905/jpe.2016.19.3.055 Go to original source...
  22. Sellhorn, T., (2020): Machine Learning und empirische Rechnungslegungsforschung: Einige Erkenntnisse und offene Fragen. Schmalenbachs Z betriebswirtsch Forsch 72, 49-69. https://doi.org/10.1007/s41471-020-00086-1 Go to original source...
  23. Staňková, V., (2019): Electronic data format XBRL: recent development and prospects in the EU. Presented at the The 20th Annual Conference on Finance and Accounting, Praha.
  24. Vydržel, K., Soukupová, V., (2012): Empirical examination of valuation methods used in private equity practice in the Czech Republic. Journal of Private Equity 16, 83-99. https://doi.org/10.3905/jpe.2012.16.1.083 Go to original source...
  25. Xu, X., Qian, H., Ge, C., Lin, Z., (2019): Industry classification with online resume big data: A design science approach. Information & Management 103182. https://doi.org/10.1016/j.im.2019.103182 Go to original source...
  26. Yang, S.Y., Liu, F., Zhu, X., Yen, D.C., (2019): A Graph Mining Approach to Identify Financial Reporting Patterns: An Empirical Examination of Industry Classifications. Decision Sciences 50, 847-876. https://doi.org/10.1111/deci.12345 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.